
 

 

 
 

 

Predicting Forest Fires in Portugal and Northern Algeria 
 

 
 

Abstract 

Forest fires are becoming a major, global environmental concern in recent years. Therefore, 
creating an effective forest fire monitoring system is critical to prevent environmental and 
economic damage. However, most models created have either included a limited number of 
environmental factors or not considered interaction effects between environmental factors. In the 
current study, we performed an analysis on all 11 potential explanatory variables from a merged 
dataset of Algerian and Portugal forest fire datasets. We used the drop-in-deviance test to 
conduct a variable selection process on a training dataset to determine which combination of 
environmental factors best predict the occurrence of a forest fire. Overall accuracy, ROC curves, 
residual analysis, transformations, and interaction terms were also considered as we developed 
our model using five of the explanatory variables in our dataset. Overall accuracy in our training 
dataset is 70.57% while accuracy for our testing data is 65.26%. 
 
  



 

Introduction 
As climate change and human activities increase, forest fires have increased in intensity 

and extent throughout the world. Both Algeria and Portugal suffer the consequences of seasonal 
forest fires, which directly cause destruction of forest ecosystems, loss of lives, and monetary 
expenses for government agencies (Kutter et al, n.d.; Mateus & Fernandes, 2014).  

Research has suggested that forest fire mitigation strategies need to integrate available 
biological, ecological, physical, and technological fire-related information (Mateus & Fernandes, 
2014). Abid and Izeboudjen (2020) produced a fire prediction model with an 82.89% accuracy 
and 0.92 recall value using a decision tree using Algerian forest fire and found that temperature, 
relative humidity, and wind speed are important predictors for fire occurrences. Cortez and 
Morais (2007) used a data mining approach to propose a Support Vector Machines (SVM) model 
using only four direct weather inputs (temperature, rain, relative humidity, and wind speed) to 
predict small fires in Montesinho natural park in Portugal.  

To investigate what combination of factors best predicts forest fires, we merged two 
forest fire datasets collected from Algeria and Portugal. The Algeria dataset included 244 
instances of forest fire data from two regions of Algeria, namely the Béjaïa region and the Sidi 
Bel Abbès region from June 2012 to September 2012 (Cortez & Morais, 2007). We removed one 
observation due to an error within the Algeria dataset. The Portugal dataset included 517 entries 
of forest fire data from the Montesinho Natural Park located in the Tr´as-os-Montes northeast 
region of Portugal from January 2000 to December 2003 (Abid & Izeboudjen, 2020). The 
common variables between these two datasets are region, month, temperature, humidity, rain, 
and multiple weather indices from the Forest Fire Weather Index system. The Fine Fuel Moisture 
Code (F Moisture) is one of those indices and represents the moisture content of litter and fine 
fuels in a forest, and requires temperature, relative air humidity, wind speed, and precipitation as 
input data (Van Wagner 1987). The Algeria dataset did not measure the area or the intensity of 
the fire. Therefore, we used only the binary variable of whether or not a fire occurred on that day 
(BinaryFire) as the response variable. 
 
Methods 

Our dataset was split into training and testing subsets before we began our analysis. 70% 
of our data were in the training dataset, and the remaining 30% were in the testing dataset. In 
order to account for overfitting, the 70-30 split was used to train on less data from the already 
small dataset. We conducted a logistic regression analysis to best predict if there is a fire or not 
on the 11 variables including all two-way interaction terms. We proceeded our analysis with 
regression subset selection using an exhaustive search using the all-interaction model. In order to 
compare the models with varying terms, we selected models with low Akaike’s Information 
Criteria (AIC) and Bayesian Information Criterion (BIC) values as the best model. These criteria 
are used for regression model selection and account for the tradeoff between model complexity 
and fit. Models with low BIC and AIC values are generally preferred. We used accuracy and 
deviance as other metrics to compare models. Drop-in-deviance tests were performed to compare 
models with close AIC and BIC values.  
 
Results 

Using our training dataset, we created no-interaction term and all-interaction term 
models. A drop-in-deviance test comparing the all-interaction model with the no-interaction 
model suggested that at least one interaction was important and should be included in the model. 



 

Adding all interactions resulted in improvements in various metrics in our model (Appendix 1). 
Based on the best regression subset selection analysis, the models with 5, 6, and 7 terms had 
comparably low AIC and BIC values. Since our goal is to minimize forest fires, the model 
should minimize the number of false negatives. That is, our model should limit the number of 
times we predict no fire when there actually is a fire. To do this, we used a threshold of 0.4 in our 

confusion matrix 
based on the ROC 
curve and the 
goal to maximize 
the true positive 
fraction, which is 
a cautious 
approach that 
allows for 
minimal false 
negatives 
(Appendix 2). 

Based on this threshold, we employed a confusion matrix for each model in order to compare 
accuracy and number of false negatives (Table 1, Appendix 5-8).  
 The 5, 6, and 7 term models have similar interaction terms included and comparable AIC 
values, deviance, and accuracy (Table 1, Appendix 10, Appendix 11). Therefore, we decided to 
conduct the drop-in-deviance test between these three models and the all-interaction model 
(Appendix 3). The drop-in-deviance test determined that the 5 term model adequately explains 
the variance in the model (Appendix 3). When the 5 term model was compared to the all-
interaction term model there were no noticeable improvements in our metrics, and a drop-in-
deviance test showed no significant difference (Appendix 3, Appendix 4). Since this reduced-
interaction model balanced predictive power with simplicity, while not compromising accuracy 
and false negatives, we chose to use the 5 term model, with the addition of all variables shown to 
have significant interaction terms, as our best overall model. When we evaluated this model with 
our testing data, we found a small decrease in the overall accuracy and deviance, while the 
percent of false negatives remained the same (Table 1, Appendix 9). This small drop in accuracy 
provides evidence that our model based on 
estimation could be used to predict future 
datasets while maintaining accuracy. 

Our final 5 term model indicated that 
temperature is a significant predictor of 
forest fires, in addition to interactions 
between temperature, humidity, F moisture, 
initial spread, and Portugal (Appendix 12). 
Initial Spread is an index variable calculated 
through wind speed and F. Moisture that 
represents the rate of fire spread without the 
influence of fuel (Wagner, 1987). The 
interaction effect of temperature and initial 
spread on fire occurrences indicate that when 
temperature level is high, high and low rate 

Figure 1. Probability of fire by temperature level and initial 
spread level (Temperature Level: <=15ºC is Low, >=30ºC is 
High; Initial Spread Level: >=15 is High, <15 is Low).



 

of fire spread influence the probability of fire equally, but when temperature levels are low, a 
low rate of fire spread has a higher probability of fire (Figure 1). Our model also shows that 
Initial spread interacts with Portugal, revealing that region can affect which terms should be 
included in the model.   
 
Discussion 
 Our reduced final 5 term model offers an improved model compared to the no-interaction 
term model and the all-interactions term model. Thus, we created a model to predict forest fire 
occurrences in Portugal and Northern Algeria using a relatively small number of variables. 
Although our goal was not to find the significance of individual variables on forest fire 
occurrences, the overall trend that temperature and humidity are important predictor variables for 
fire occurrence is corroborated in the current study (Cortez & Morais, 2007; Abid & Izeboudjen, 
2020). Compared with the predictive model using the Algeria dataset which had an 82.89% 
accuracy and 0.92 recall value (Abid & Izeboudjen, 2020), our model does have a lower 
accuracy of 70.57%. This can be explained by the addition of the Portugal dataset to the current 
study, which may have made it harder to generate a highly accurate model for two regions with 
different climate environments. However, our model does have a higher recall value 
( !"#$%&	()	*&"%	+(,-*-.%,
(!"#$%&	()	*&"%	+(,-*-.%,)∗(!"#$%&	()	)23,%	!%42*-.%,)

) at 0.97 compared to 0.92. The number of 
correctly predicted fires is most important to the current study’s aim, which can be done by 
limiting the number of false negatives and maximizing the number of true positives. The current 
study's model is further supported by ecological knowledge that daily weather and long-term 
climate influence fire ignition potential, behavior, and severity – including moisture content 
(Benson et al., 2008). A previous study that found low humidity and high temperature are both 
primary factors causing forest fires, which is consistent with the current model’s interaction term 
between temperature and humidity (Varela et al., 2020). 
 These results must be taken in context. Since our model is limited to data from three 
specific regions, this model can only be used as predictors for fires in these regions, and 
therefore has limited generalizability. The interaction term between Portugal and initial spread as 
a predictor in our model suggests the combination effect of region and initial spread on the fire 
occurrences. Since region does impact the model, we suggest that region will be an important 
fire predictor. This could imply that models should be created on a case-by-case basis in order to 
have the most accurate predictions by region. Additionally, the best model does use both weather 
measurements along with indices, which means to use the model, one must have all those 
measurements and calculations. Our addition of weather indexes and interaction terms, which 
have not been discussed in current literature, may provide insight into the existing fire predicting 
models, helping inform and protect nature reserves, animals, plants, and people from deadly and 
destructive fires. The model’s limitations demand addressing before it is used in real-world 
settings to assist with forest fire prevention.  
 Before any generalizations toward forest fire occurrences in other regions can be made, 
further research outside of Algeria and Portugal are required. Furthermore, an important aspect 
of the forest fire – the intensity of the fire – was not addressed in our study, even though the 
Portugal dataset did measure the fire area. The indicators of the severity of the fire, like the 
specific fire behavior and the effect of the fire on the landscape could potentially be monitored 
for future studies as outcome variables. By including fire as a quantitative variable, more 
meaningful connections between the severity of the fire and environmental factors can possibly 
be discovered. 
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Appendix  

Model AIC Deviance Accuracy False Negatives 

No-interaction Term Model 634.03 612.03 64.72% 28 

All-interaction Term Model 573.61 463.61 74.41% 16 

Appendix 1. Evaluation metrics for the no-interaction term model and the all-interaction term 
logistic regression models. 
 

 

 
Appendix 2. ROC curve for each model. Threshold of t=0.4 leads to between 90–95% 
sensitivity, with a false positive rate between 40–60%. 
 

a. All Interaction term model b. 7 term model

c. 6 term model d. 5 term model

e. 5 term model (test)



 

Full Model  Reduced Model P-value 

7 term model 6 term model  p = 0.1492 

6 term model 5 term model p = 0.0607 

All-interaction term model 5 term model p = 0.2544 
Appendix 3. Drop-in-deviance test results.  
 

Model AIC Deviance Accuracy False Negatives 

5 terms 535.52 515.52 70.57% 7 

All 
-interaction Term 
Model 

573.61 463.608 74.41% 16 

Appendix 4. Evaluation metrics for the 5 term and all-interaction term logistic regression 
models. 
 

 Predicted Outcome 

 
 

Actual Outcome 

 No Fire Fire 

No Fire 103 154 

Fire 7 283 

Appendix 5. Confusion matrix for 5 term model. 
 

 Predicted Outcome 

 
 

Actual Outcome 

 No Fire Fire 

No Fire 108 149 

Fire 11 279 

Appendix 6. Confusion matrix for 6 term model. 
 



 

 Predicted Outcome 

 
 

Actual Outcome 

 No Fire Fire 

No Fire 111 146 

Fire 15 275 

Appendix 7. Confusion matrix for 7 term model. 
 
 Predicted Outcome 

 
 

Actual Outcome 

 No Fire Fire 

No Fire 133 124 

Fire 16 274 

Appendix 8. Confusion matrix for all-interaction term model. 
 

 Predicted Outcome 

 
 

Actual Outcome 

 No Fire Fire 

No Fire 25 71 

Fire 3 114 

Appendix 9. Confusion matrix for 5 term model on testing data. 
 



 

Variables 5 term model 6 term model 7 term model All-interaction 
term model 

Temperature Yes Yes Yes Yes 

Humidity Yes Yes Yes Yes 

Windspeed No Yes Yes Yes 

Rain No No No Yes 

F.Moisture Yes Yes Yes Yes 

D.Moisture No No No Yes 

Drought No Yes Yes Yes 

Initial.Spread Yes Yes Yes Yes 

Region Yes Yes Yes Yes 
Appendix 10. Terms included in each model. 
 

Model Terms  

All-interaction term  (Temperature, Humidity, Windspeed, Rain, 
F.Moisture, D.Moisture, Drought, 
Initial.Spread, Portugal, SidiBelAbbes, 
Bejaia)^2 

No-interaction term  Temperature, Humidity, Windspeed, Rain, 
F.Moisture, D.Moisture, Drought, 
Initial.Spread, Portugal, SidiBelAbbes, Bejaia 

5 term Temperature 
temperature*humidity 
temperature*F.moisture 
temperature*Initial Spread 
Initial Spread*Portugal 

6 term Temperature 
temperature*humidity 
temperature*F.moisture 
temperature*InitialSpread 
InitialSpread*Portugal 
windspeed*drought 



 

7 term  Temperature 
temperature*humidity 
temperature*F.moisture 
temperature*InitialSpread 
Initial Spread*Portugal 
windspeed*drought 
humidity*F.Moisture 

Appendix 11. Terms listed by each model. 
 

Terms in 5 term model  Estimate  Std. Error  Z value  p-value 

(Intercept)  -32.119068  18.014557 -1.783 0.0746 

Temperature -0.303441 0.359633 -0.844  0.3988 

Humidity -0.018956 0.020028  -0.947 0.3439  

F.Moisture 0.023880 0.059441 0.402 0.6879 

Initial.Spread 12.121778 6.518884 1.859 0.0630 

Portugal 32.453103 17.191091 1.888 0.0591 

Temperature:Humidity 0.001347  0.001159 1.162  0.2451 

Temperature:F.Moisture  0.002015 0.003977 0.507 0.6123 

Temperature:Initial.Spread 0.010888   0.005538   1.966 0.0493 

Initial.Spread:Portugal  -12.378363 6.519025 -1.899 0.0576 

Appendix 12. Coefficients for all terms in the 5 term model along with their standard errors, Z, 
and p-values.  


